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Abstract
Script-based I/O benchmarks record the I/O behavior of

applications by using an instrumentation library to trace
I/O events and their timing. A replay engine can then
reproduce these events from the script in the absence
of the original application. This type of benchmark re-
produces real-world I/O workloads without the need to
distribute, build, or run complex applications. However,
faithfully recreating the I/O behavior of the original ap-
plication requires careful design in both the instrumenta-
tion library and the replay engine. This paper presents
the Pianola script-based benchmarking system, which in-
cludes an accurate and unobtrusive instrumentation sys-
tem and a simple-to-use replay engine, along with some
additional utility programs to manage the creation and re-
play of scripts. We show that for some sample applica-
tions, Pianola reproduces the qualitative features of the
I/O behavior. Moreover, the overall replay time and the cu-
mulative read and write times are usually within 10% of the
values measured for the original applications.

1 Introduction
I/O benchmarks help system designers evaluate the per-
formance of file systems and storage devices. Two types
are commonly used: Application-based I/O benchmarks
measure the system response to a specific workload. They
produce relevant data, but they can be difficult for nonspe-
cialists to build and run. Moreover, they may not be dis-
tributed widely if they reveal sensitive algorithms or data.
Synthetic benchmarks measure overall I/O system perfor-
mance using standard or customized I/O access patterns.
They are usually easier to build and run than application-
based benchmarks, but they may not accurately replicate
specific workloads of interest.

A third type of benchmark, which we call script-based,

combines the realism of application code with the conve-
nience of synthetic benchmarks. In this model, an instru-
mentation library records I/O events and timing data from
a running application to produce a script. A replay engine
reads this script (or a processed version of it) and repro-
duces the I/O events at the proper time intervals. (See Fig-
ure 1.) The replay engine can be simple to compile and
use, and scripts can be generated from real applications
without revealing sensitive information.

Others have experimented with script-based I/O bench-
marks (for example, Mesnier et al. [3]). Extracting accu-
rate and appropriate I/O information from an application
is challenging, and so is replaying the I/O events at the
correct time intervals. This paper describes our efforts on
both fronts. Our main contributions are:

• Determining the right level in the software stack at
which to monitor I/O events;

• Using binary instrumentation to record these events
with minimal overhead;

• Compressing and preparsing scripts to minimize the
impact on the I/O system of reading a script during
replay; and

• Implementing a replay engine that can accurately re-
produce the time intervals between I/O events.

Our system is called Pianola. (The name is taken from
an early model of player piano.) Pianola currently repli-
cates the overall execution time and the I/O time of tested
applications within about 10%.

2 Tracing I/O events
The central question in designing a system to record I/O
events is: Which events should be recorded? A simple
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Figure 1: A script-based I/O benchmark records the I/O events that an application generates, along with the time
intervals between then. The resulting script can be fed to a replay engine, which reproduces the I/O behavior of the
original application.

approach would be to record each call that an application
issues to an I/O-related function in the standard Unix li-
brary. For example, if a C program calls fprintf , record
the fprintf call, and if a Fortran program calls an inter-
mediate library that in turn calls the Unix write function,
record the call to write. This approach makes it easy to
instrument applications without recompiling or relinking
them, using library interposition (at least in many Unix
implementations). Linux, for example, has a dynamic
loader that lets users substitute their own versions of li-
brary functions for the standard ones. The customized
versions can record information about a function call and
then call the standard version of the function to complete
the operation that the user requested.

Instrumenting an application’s calls to the I/O high-
level functions has two problems. First, a significant
amount of computation may occur within a high-level
function before (or after) any data is moved between the
application and the I/O system. This computation should
not be counted in assessments of I/O system performance
because it depends entirely on the processing power and
memory performance of the system, and not on the per-
formance of the storage hardware or its interconnection
network. This is not to say that the computation time that
elapses during a high-level I/O call should not be mea-
sured and reproduced in a benchmark, only that it should
be counted in the compute time and not the I/O time.

The second reason for not instrumenting high-level I/O

calls is that they often handle data in small increments.
An application may call fprintf many times before an in-
ternal buffer fills up and the library issues the write sys-
tem call to move the data to storage. Recording the many
fprintf calls instead of the single write call increases the
number of events logged. As we will show later, minimiz-
ing the size of the log improves the fidelity of the replay.

A better approach is to log only the calls to system-
level functions, since these are at the interface between
the application and the I/O system. However logging
these calls presents a new challenge: library interposition
does not allow us to intercept system calls that high-level
I/O functions make. For example, an application’s direct
call to open can be captured, but a call that fopen makes
to open cannot be captured using standard interposition
techniques. In fact, fopen may not call the open function
at all; instead it may issue an equivalent series of low-level
instructions that cause the system to open the file.

We initially considered two possible solutions, both of
which proved unworkable. Since the source code for the
GNU/Linux standard I/O library is available, we could
modify it to add our instrumentation at the appropriate
level and then use library interposition to link our instru-
mented version of the library dynamically to applications.
However, this code is quite complex, so finding all the lo-
cations where high-level functions make system calls is
difficult and error-prone. Moreover, we would have to
reimplement the instrumentation in each version of the li-
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Figure 2: Using the Jockey dynamic instrumentation library, we can modify the executable code of an application
after it has been loaded into memory. Each time Jockey identifies an I/O system call in the uninstrumented code, it
replaces the relevant instructions with a call to some “trampoline code” that saves the current state and then calls an
instrumented version of the I/O operation. When that version completes, the trampoline code restores the state and
jumps back to the original code.

brary we wished to support. The second possibility was
to use the Linux strace utility to intercept the I/O system
calls using the system’s debugger interface. Strace is sim-
ple to use and provides useful and detailed information,
but in our tests it incurred tens of microseconds of over-
head for each monitored I/O event. The resulting timing
data exaggerates the duration of the computation intervals
between the I/O events. As a result, it was not possible to
produce an accurate script from this data.

The solution we settled on uses binary instrumentation.
This technique has been available for many years in tools
such as DynInst [2] and DPCL [1]. The idea is to scan the
executable code of an application after it has already been
loaded in memory, looking for patterns of instructions that
form events of interest, such as calls to a particular func-
tion or system calls that invoke kernel operations. The bi-
nary instrumentation tool replaces these instructions with
a call to code that does some other operation chosen by the
tool designer, such as recording the event or examining
variables. The inserted code may then complete the ac-
tion that the original instructions implemented and jump
back to the instruction that follows the ones that were re-
placed. The scanning and replacement may be done by an
external process (with appropriate access permission), or
it may be done by a library that the executable itself loads.

To apply this general technique to our application, we

have chosen the Jockey library [4], which is designed
specifically to instrument system calls on Linux plat-
forms. Applications can load Jockey dynamically using
the Linux library interposition facility.

In Linux systems, the pattern for system calls consists
of an instruction that places a system call identifier in a
particular register, following by an interrupt instruction
with the hexadecimal value 0x80. When Jockey finds
these instructions, it replaces them with instructions to
jump to a specially-prepared region of “trampoline code”
that saves the current processor state and then calls a user-
defined function that substitutes for the original system
call. In our case, this function records the system call pa-
rameters and timing, and then issues the original system
call. When the user-defined function returns to the tram-
poline code, the trampoline code restores the processor
state and jumps back to the instruction that followed the
system-call pattern. Figure 2 illustrates the process.

Jockey scans and modifies each instance of an I/O sys-
tem call only once per execution of the program. When-
ever the program encounters a modified I/O call, it simply
executes the substituted instructions that call the instru-
mented code. As a result, a dynamically instrumented
application can execute its instrumentation as efficiently
as if it had been compiled into the original application.
To see how the instrumentation overhead differs between
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Listing 1: Initial output from Pianola is similar to strace output.

0 .00010284 openm ( " / home / john / s o m e f i l e . t x t " , 548 , 384) = 7 <0.00012080 >
0.00014123 openm ( " / home / john / o t h e r f i l e . t x t " , 626 , 436) = 8 <0.00003775 >
0.00004879 c l o s e ( 8 ) = 0 <0.00002225 >
0.00002949 open ( " / home / john / o t h e r f i l e . t x t " , 516) = 8 <0.00002033 >
0.00003065 l l s e e k ( 8 , 2147479512 , 2147479512 , 0 ) = 0 <0.00000561 >
0.00001730 w r i t e ( 8 , −1078271740 , 24) = 24 <0.00009151 >

Listing 2: Intermediate script corresponding to Listing 1 has substituted file names and compute commands to specify
interevent timing.

openm ( p i a n o l a _ t m p 1 548 384 ) = 7
compute ( 0 .000020 )
openm ( p i a n o l a _ t m p 2 626 436 ) = 8
compute ( 0 .000011 )
c l o s e ( 8 ) = 0
compute ( 0 .000007 )
open ( p i a n o l a _ t m p 2 516 ) = 8
compute ( 0 .000010 )
_ l l s e e k ( 8 2147479512 0 ) = 2147479512
compute ( 0 .000012 )
w r i t e ( 8 24 ) = 24
compute ( 0 .000033 )

Jockey and strace, we measured the compute (non-I/O)
time for one of our sample applications with Jockey and
strace. For comparison, we also measured the user time
of the uninstrumented application with the Unix time util-
ity. For the Jockey-instrumented run, the average compute
time over three trials was 289 seconds; for time it was
284 seconds, indicating for this test that our binary instru-
mentation added 5 seconds to the measured compute time.
By contrast, strace measured the 347 seconds of compute
time, 63 seconds more that the time utility.

Much of the rest of our instrumentation library is
adapted from the //TRACE system [3]. Although //-
TRACE was developed to instrument I/O calls in parallel
applications, our focus has been on low-overhead instru-
mentation of sequential programs. Nevertheless, we have
borrowed the //TRACE approach of setting up a daemon
process separate from the main application to collect and
store trace data.

3 Processing the script
The Pianola instrumentation library outputs a text-
formatted script similar to the output of strace. Each line
in the script represents an I/O event. A sample of typical
output appears in Listing 1.

The first item in each line is the time in seconds since
the beginning of the preceding event; next comes the event
with its parameters and return value; finally, the measured
duration of the event, also in seconds, appears in angle
brackets.

This format has the advantage of being both human-
readable and portable among machines. The latter charac-
teristic is especially important, since replay scripts should
be usable on a wide range of platforms. In the example
above, the open and openm calls specify flags as numeric
values. (The two forms of open distinguish calls with and
without the optional mode argument.) Since the values of
flags vary across systems, the instrumentation library con-
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verts open flags to canonical values before writing them
in the script. (Strace spells out the names of flags, for
example, O_CREAT | O_RDONLY.)

A potential problem with trying to replay open
events on another machine is that the target sys-
tem may not have the same directory hierarchy. If
" /home/john/somefile . txt " doesn’t exist on a target ma-
chine, the open call will fail. To address this problem, we
have written a simple utility that examines each open call
in a script. If the file is being created, the utility substi-
tutes a temporary name with no directory prefix. Since
the replay engine will write meaningless data to this file,
giving it a different name helps avoid confusion with the
output files of the original application. If the file is not
being created, then the name is used as is, but any direc-
tory prefix is stripped. However, if the file is in a standard
directory, such as " / usr / include" or " /proc", then it is
left unchanged. The utility outputs a new version of the
script with these substitutions and reports all the changes
it made, so the user can arrange to have files with the cor-
rect names available when the script is run on a target ma-
chine. Of course, “standard” directories on one platform
may not be standard on another, so this solution isn’t per-
fect, and it may be necessary to edit filenames by hand in
some cases.

The Pianola software further processes the script in sev-
eral steps before it is ready to be replayed. First, it com-
putes the intervals between each pair of successive events
and generates a new script in which I/O events alternate
with compute events that simply specify a delay time.
At the same time, certain I/O events that do not involve
files (such as output to the terminal or data transfer over
sockets) are removed. The resulting intermediate script is
still in plain-text format and is portable across platforms.
Listing 2 shows the intermediate script corresponding to
Listing 1, with the full path names replaced by temporary
file names. Unlike the original version, the intermediate
script does not contain any data on the duration of the I/O
events that were recorded from the original application;
only the time between events appears. The time spent in
the application’s I/O operations is not needed for replay,
and in fact it may be distorted because of the additional
time spent in logging.

This translation step closely follows the model of //-
TRACE. The next section describes the remaining steps
in processing and replaying a script.

4 Replaying events
The replay engine could parse and execute the interme-
diate script directly, but that has two drawbacks. First,
parsing lines of text can take a significant amount of time.
For I/O events that are closely spaced in time, the replay
engine could fall behind schedule as it interpreted each
line of the script. Second, the script itself may be large,
and the act of reading it may compete for bandwidth and
file system buffer space with the I/O events that the replay
engine is reproducing.

To address the first problem, we parse the text-
formatted script in advance into a binary format that the
replay engine can interpret much more quickly. This
translation makes the resulting script platform-dependent
because of varying integer sizes and byte orders, so it
must be done on the target system (or a compatible sys-
tem). In the binary format, there is one record per event,
and each record has fields for the event type, the parame-
ters, and the return value. String arguments are stored in
event order in a separate file. This simplifies reading the
events into memory, as described below.

We reduce the impact of reading the script on the over-
all I/O performance by writing the binary script data in
compressed format. We simply use the open source zlib
compression library to output the binary script. In our ex-
periments, the uncompressed binary representation of the
script data is similar in size to the text representation. This
is because the fixed-format records have enough fields to
hold all the parameters for any known I/O operation, and
most I/O events do not require all the fields or use all the
available precision. Compressing the binary data typically
reduces it by a ratio of about 30:1 or more. The follow-
ing table shows the compression ratios for the applications
presented in Figures 4 and 5.

Ingest Miranda
Uncompressed 60 MB 260 MB
Compressed 1.5 MB 6.5 MB
Ratio 30:1 40:1

Figure 3 shows the processing sequence for the replay
script. Of course, when the replay engine reads the com-
pressed script, it must do some computation to get the un-
compressed I/O events. However, we can defer this pro-
cessing to periods of time when the engine would oth-
erwise be idle. The replay engine attempts to read and
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Figure 3: The plain-text script that the instrumentation library generates is parsed to binary format and then com-
pressed. The replay engine reads the compressed script and decompresses sections of it into a buffer before executing
the commands. Preparsing the data allows the replay engine to execute commands quickly, while compressing the
script minimizes the impact on the I/O system of reading the script.

decompress script data only during the compute intervals
between the scripted I/O events. During these periods, it
fills a buffer with decompressed events to be replayed, so
events are ready to execute as soon as the compute inter-
val expires. When an event requires a string argument, the
replay engine reads it from the separate strings file (which
is also compressed).

Instead of preparsing and then compressing the script,
we could have simply compressed the text-formatted
script and then decompressed and parsed it in the replay
engine during the compute intervals. However, the text-
formatted script compresses only by ratio of about 2:1,
rather than the 30:1 ratio of the binary version, so this
approach would increase the script’s impact on the I/O
system during replay.

We could also compress the text-formatted script as the
instrumentation library outputs it, but there is little bene-
fit to this. As noted earlier, the important time intervals
are those between I/O events, not the timing of the events
themselves. Reducing the perturbation of the I/O events
while they are recorded does not improve the fidelity of
the replay.

4.1 Memory footprint

In our testing of Pianola, we have hypothesized that the
small memory footprint of the replay engine could cause
it to interact with the I/O system differently from a larger-
memory application. Perhaps it leaves more memory to
the operating system for file buffering than the original ap-

plication does. With more buffer space available, the op-
erating system could complete more I/O operations with-
out accessing the disk.

To test this theory, we modified our code to record brk
and mmap system calls, which modify the memory allo-
cation. The replay engine then allocates chunks of mem-
ory to simulate the effects of brk and mmap. During idle
periods, the replay engine accesses selected addresses in
these chunks to ensure that virtual memory is paged in.
We access addresses with a 1024-byte stride so that we
touch a large number individual blocks during the the idle
period. Of course, this approach probably does not repli-
cate the memory access pattern of the original application,
but it does maximize the memory footprint of the replay
engine. Nevertheless, our tests showed that although we
could approximate the memory footprint of the applica-
tion, there was no noticeable effect on the execution time
of the I/O operations.

5 Evaluation
We generated replay scripts from several data-intensive
applications and compared the I/O activity profiles of the
replayed scripts with the original applications. Figures 4
and 5 compare the I/O profiles for two applications with
the profiles for the replayed sequences of operations. One
ingests a large set of graph data and converts it to an
internal format for further processing. The other is the
Fortran I/O kernel of a hydrodynamics application called
Miranda. The profiles plot the cumulative time spent in
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read and write operations against the cumulative execu-
tion time. Although the profiles do not overlap com-
pletely, their shapes are similar, and the I/O and total exe-
cution times are within about 10% in most cases. The fol-
lowing table summarizes the accuracy of replay for these
benchmark runs. (All times are in seconds.)

Ingest Miranda
Application read 35.8 19.9
Replay read 35.7 13.8
Read time ratio 0.997 1.44
Application write 12.8 73.9
Replay write 12.5 70.9
Write time ratio 0.977 0.959
Application runtime 334 274
Replay runtime 319 250
Runtime ratio 0.955 0.912

The largest mismatch between the application and re-
play times was for Miranda’s read operations. Interest-
ingly, the Ingest benchmark also shows the replay’s read
events running faster than the application’s early in the ex-
ecution. (Refer again to Figure 4.) Later, the replay read
time “catches up.” Perhaps some read buffering mech-
anism is working more efficiently for the replay engine
than for the application, but the benefits disappear as more
data is read.

6 Conclusions and future work
Script-based benchmarks offer several advantages over
application-based benchmarks and synthetic benchmarks,
but they also have some disadvantages. First, a script cap-
tures the application’s behavior only for a single execu-
tion, reflecting a particular set of input parameters and
data. While the behavior of other benchmarks can be
often modified though small input files or command-line
arguments, replicating different scenarios with a script-
based benchmark requires different scripts. Second, for
each file the original application reads there must be a file
of the same size (though not necessarily the same content)
available for the replay engine to read. For applications
that access many files, setting up the necessary environ-
ment on a target system could be tedious.

Generating an I/O benchmark from a script of recorded
events is a straightforward concept, but accurately emu-

lating the application’s I/O behavior requires some care.
The most important considerations we found are:

• Recording events at the right level in the software
stack;

• Minimizing the overhead of the instrumentation so
that interevent timing can be gathered accurately;
and

• Minimizing the effect of reading the script on the I/O
behavior of the replay engine.

Although the fidelity of Pianola’s replay is acceptable for
many purposes, there is probably room for improvement.
It should also be possible to extend Pianola to work with
parallel I/O systems. Much of the infrastructure for this
conversion has already been developed in the //TRACE
library.
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Figure 4: This I/O time profile shows the cumulative time spent in read and write operations versus the total execution
time for a C-language graph ingestion application (blue and red lines) and the replay engine’s recreation of the same
I/O events (orange and green lines). Although the patterns do not line up exactly, the profiles are similar, and the I/O
times and total execution times are within 10%.
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Figure 5: Similar to Figure 4, the profiles for the I/O kernel of a Fortran hydrodynamics code and the replayed version
of the kernel show reasonably good agreement, although the replayed read operations finished somewhat faster than
in the original.

10


